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Abstract Data mining is most commonly used in attempts to
induce association rules from transaction data. Transactions
in real-world applications, however, usually consist of quan-
titative values. This paper thus proposes a fuzzy data-mining
algorithm for extracting both association rules and member-
ship functions from quantitative transactions. We present a
GA-based framework for finding membership functions suit-
able for mining problems and then use the final best set of
membership functions to mine fuzzy association rules. The
fitness of each chromosome is evaluated by the number of
large 1-itemsets generated from part of the previously pro-
posed fuzzy mining algorithm and by the suitability of the
membership functions. Experimental results also show the
effectiveness of the framework.

Keywords Data mining · Genetic algorithm · Fuzzy set ·
Membership function · Association rule

1 Introduction

Data mining is most commonly used in attempts to induce
association rules from transaction data. An association rule
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is an expression X → Y , where X is a set of items and Y is
a single item [1]. It means in the set of transactions, if all the
items in X exist in a transaction, then Y is also in the transac-
tion with a high probability. For example, assume whenever
customers in a supermarket buy bread and butter, they will
also buy milk. From the transactions kept in the supermarkets,
an association rule such as “Bread and Butter→Milk” will be
mined out. Most previous studies focused on binary valued
transaction data. Transaction data in real-world applications,
however, usually consist of quantitative values. Designing a
sophisticated data-mining algorithm able to deal with various
types of data presents a challenge to workers in this research
field.

Recently, fuzzy set theory has been used more and more
frequently in intelligent systems because of its simplicity
and similarity to human reasoning [13]. The theory has been
applied in fields such as manufacturing, engineering, diag-
nosis, economics, among others [4,13,16,24]. Several fuzzy
learning algorithms for inducing rules from given sets of data
have been designed and used to good effect with specific do-
mains [6–9,12].

As to fuzzy data mining, Hong et al. [10] proposed an
algorithm to mine fuzzy rules from quantitative data. They
transformed each quantitative item into a fuzzy set and used
fuzzy operations to find fuzzy rules. Cai et al. [2] proposed
weighted mining to reflect different importance to differ-
ent items. Each item was attached a numerical weight given
by users. Weighted supports and weighted confidences were
then defined to determine interesting association rules. Yue
et al. [25] then extended their concepts to fuzzy item vectors.
Besides, Lee et al. [15] proposed a mining algorithm which
used multiple minimum supports of different items to mine
fuzzy association rules. In the above approaches, the mem-
bership functions were assumed to be known in advance.
Although many approaches for learning membership func-
tions were proposed [3,18,19,22,23], most of them were
usually used for classification or control problems. Wang
et al. [21] tuned membership functions for intrusion detec-
tion systems based on similarity of association rules. Kaya
et al. [14] proposed a GA-based clustering method to derive
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Fig. 1 GA-based framework for searching membership functions

a predefined number of membership functions for getting a
maximum profit within an interval of user specified minimum
support values.

We have proposed a fuzzy mining algorithm to mine fuzzy
rules under a given set of membership functions [11]. The
given membership functions may, however, have a critical
influence on the final mining results. This paper thus modifies
the previous algorithm and proposes a new fuzzy data-mining
algorithm for extracting both association rules and member-
ship functions from quantitative transactions. The proposed
algorithm can dynamically adapt membership functions by
genetic algorithms and uses them to fuzzify the quantitative
transactions. Our previous fuzzy mining approach [11] can
thus be easily used to find fuzzy association rules. The fit-
ness of each set of membership functions is then evaluated
from the mining results and used as the evolutionary criteria
in GA. After the GA process terminates, a better set of asso-
ciation rules can then be expected with a more suitable set of
membership functions.

The remaining parts of this paper are organized as fol-
lows. A GA-based mining framework is stated in Sect. 2.
Chromosome representation is described in Sect. 3. The
adjustment process of membership functions is explained in
Sect. 4. The details of the proposed algorithm for mining both
association rules and membership functions are described in
Sect. 5. An example to illustrate the proposed algorithm is
given in Sect. 6. Experiments to demonstrate the performance

of the proposed algorithm are stated in Sect. 7. Conclusions
and future works are given in Sect. 8.

2 A GA-based mining framework

In this section, the fuzzy and GA concepts are used to dis-
cover both useful association rules and suitable membership
functions from quantitative values. We propose a GA-based
framework for searching membership functions suitable for
mining problems and then use the final best set of mem-
bership functions to mine association rules. The proposed
framework is shown in Fig. 1.

The proposed framework maintains a population of sets
of membership functions, and uses the genetic algorithm to
automatically derive the resulting one. It first transforms each
set of membership functions into a fixed-length string. It then
chooses appropriate strings for “mating”, gradually creat-
ing good offspring membership function sets. The offspring
membership function sets then undergo recursive “evolution”
until a good set of membership functions has been obtained.

3 Chromosome representation

It is important to encode membership functions as string rep-
resentation for GAs to be applied. Several possible encoding
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approaches have been described in [3,17,22,23]. In this
paper, each set of membership functions is encoded as a
chromosome and handled as an individual with real-number
schema.

In order to effectively encode the associated membership
functions, we use two parameters to represent each member-
ship function, as Parodi and Bonelli [17] did. Membership
functions applied to a fuzzy rule set are then assumed to be
isosceles-triangle functions as shown in Fig. 2, where R j k
denotes the membership function of the kth linguistic term
of item I j , c jk indicates the center abscissa of fuzzy region
R jk , and w jk represents half the spread of fuzzy region R jk .

As Parodi and Bonelli did, we then represent each mem-
bership function as a pair (c, w). Thus, all pairs of (c, w)s
for a certain item are concatenated to represent its member-
ship functions. Thus the set of membership functions MF1
for the first item I1 is then represented as a substring of
c11w11 . . . c1|I 1|w1|I 1|, where |I1| is the number of terms of
I1. The entire set of membership functions is then encoded
by concatenating substrings of MF1, MF2, ..., MF j . Since c
and w are both numeric values, a chromosome is thus en-
coded as a fixed-length real-number string rather than a bit
string. An example is given below to demonstrate the process
of encoding a set of membership functions.

Example 1 Assume there are four items in a transaction data-
base: milk, bread, cookies and beverage. Assume the mem-
bership functions for each item are given as shown in Fig. 3.

According to the proposed encoding scheme mentioned
above, the chromosome for representing the membership
functions in Fig. 3 is encoded as shown in Fig. 4.

Since the item milk has three possible linguistic terms,
Low, Middle and High, the membership functions for milk
are thus encoded as (5, 5, 10, 5, 15, 5) according to Fig. 2.
Bread also has three possible linguistic terms, Low, Middle
and High, and its associated membership functions are thus
encoded as (6, 6, 12, 6, 18, 6). Similarly, the membership
functions for cookies and beverage are, respectively, encoded
as (3, 3, 6, 3, 9, 3) and (4, 4, 8, 4, 12, 4).

Note that other types of membership functions (e.g. non-
isosceles trapezes) can also be adopted in our method. For
coding non-isosceles triangles and trapezes, three and four
points are needed instead of two for isosceles triangles.

According to the proposed representation, each chromo-
some thus consists of a set of membership functions for all the

items. This representation allows genetic operators (defined
later) to search for appropriate solutions.

4 Mining membership functions and association rules

4.1 Initial population

A genetic algorithm requires a population of feasible solu-
tions to be initialized and updated during the evolution
process. As mentioned above, each individual within the pop-
ulation is a set of isosceles-triangular membership functions.
Each membership function corresponds to a linguistic term
in a certain item. The initial set of chromosomes is randomly
generated with some constraints of forming feasible mem-
bership functions.

4.2 Fitness and selection

In order to develop a good set of membership functions from
an initial population, the genetic algorithm selects parent
membership function sets with high fitness values for mat-
ing. An evaluation function is then used to qualify the derived
membership function sets. The performance of membership
function sets is then fed back to the genetic algorithm to con-
trol how the solution space is searched to promote the quality
of the membership functions. Before the fitness of each set of
membership functions is formally described, several related
terms are first explained.

The overlap ratio of two membership functions R jk and
R ji is defined as the overlap length divided by half the mini-
mum span of the two functions. If the overlap length is larger
than half the span, then these two membership functions are
thought of as a little redundant. Appropriate punishment must
then be considered in this case. Thus, the overlap factor of
the membership functions for an item I j in the chromosome
Cq is defined as

overlap_factor(Cq j )

=
∑

k �=i

[
max

((
overlap(R jk, R ji )

min(w jk, w j i )

)
, 1

)
− 1

]
,

where overlap(R jk, R ji ) is the overlap length of R jk and
R ji . The coverage ratio of a set of membership functions for
an item I j is defined as the coverage range of the functions
divided by the maximum quantity of that item in the transac-
tions. The more the coverage ratio is, the better the derived
membership functions are. Thus, the coverage factor of the
membership functions for an item I j in the chromosome Cq
is defined as

coverage_factor(Cq j ) = 1
range(R j1,...,R jl )

max(I j )

,

where range(R j1, R j2, . . . , R jl ) is the coverage range of the
membership functions, l is the number of membership func-
tions for I j , and max(I j ) is the maximum quantity of I j in
the transactions.
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Fig. 3 An example of membership functions for four items
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Fig. 4 The chromosome representation for the membership functions
in Fig. 3

The suitability of the membership functions in a chromo-
some Cq is thus defined as

m∑

j=1

[
overlap_factor(Cq j ) + coverage_factor(Cq j )

]
,

where m is the number of items. The fitness value of a chro-
mosome Cq is then defined as

f (Cq) = |L1|
suitability(Cq)

,

where |L1| is the number of large 1-itemsets obtained by
using the set of membership functions in Cq . The suitability
factor used in the fitness function can reduce the occurrence
of the two bad kinds of membership functions shown in Fig. 5,
where the first one is too redundant, and the second one is
too separate.

The overlap factor in suitable(Cq) is designed for avoid-
ing the first bad case, and the coverage factor is for the second
one. Below, an example is given to illustrate the above idea.

Example 2 Continue Example 1, assume max(I1) = 13,
max(I2) = 14, max(I3) = 12, max(I4) = 7. The suitability
of the chromosome C1 for item I1 is computed as follows:

Suitability(C11)

=
∑

k �=i

[
max

((
overlap(R jk, R ji )

min(w jk, w j i )

)
, 1

)
− 1

]

+ 1
range(R j1, R j2, R j3)

max(I j )

= 0 + 0 + 0 + 1 = 1.

Similarly, Suitability(C12) = 1, Suitability(C13) = 1,
and Suitability(C14) = 1. The suitability of C1 is then 1 + 1
+1 + 1 = 4.

Besides, using the number of large 1-itemsets can achieve
a trade-off between execution time and rule interestingness.
Usually, a larger number of 1-itemsets will result in a larger
number of all itemsets with a higher probability, which will
thus usually imply more interesting association rules. The
evaluation by 1-itemsets is, however, faster than that by all
itemsets or interesting association rules.

In order to develop a good set of membership functions
from an initial population, the genetic algorithm selects par-
ent membership function sets with high fitness values for
mating. An evaluation function is then used to qualify the
derived membership function sets. The performance of mem-
bership function sets is then fed back to the genetic algorithm
to control how the solution space is searched to promote the
quality of the membership functions.

In this paper, the fitness of each set of membership func-
tions is evaluated by the number of large 1-itemsets generated
by executing part of the previously proposed fuzzy mining
algorithm [11]. Using the number of large 1-itemsets can
achieve a trade-off between execution time and rule interest-
ingness. Usually, a larger number of 1-itemsets will result
in a larger number of all itemsets with a higher probability,
which will thus usually imply more interesting association
rules. The evaluation by 1-itemsets is, however, faster than
that by all itemsets or interesting association rules.

4.3 Genetic operators

Genetic operators are very important to the success of specific
GA applications. Two genetic operators, the max–min–
arithmetical (MMA) crossover proposed in [5] and the
one-point mutation, are used in the genetic fuzzy mining
framework. Assume there are two parent chromosomes:

Ct
u = (c1, ......, ch, ......, cZ ),

Ct
w = (c

′
1, ......, c

′
h, ......, c

′
Z ).

The max-min-arithmetical (MMA) crossover operator will
generate the following four candidate chromosomes from
them:
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1. Ct+1
1 = (ct+1

11 , ..., ct+1
1h , ..., ct+1

1Z ), where

ct+1
1h = dch + (1 − d)c

′
h,

2. Ct+1
2 = (ct+1

21 , ..., ct+1
2h , ..., ct+1

2Z ), where

ct+1
2h = dc

′
h + (1 − d)ch,

3. Ct+1
3 = (ct+1

31 , ..., ct+1
3h , ..., ct+1

3Z ), where

ct+1
3h = min{ch, c

′
h},

4. Ct+1
4 = (ct+1

41 , ..., ct+1
4h , ..., ct+1

4Z ), where

ct+1
4h = max{ ch, c

′
h},

where the parameter d is either a constant or a variable whose
value depends on the age of the population. The best two
chromosomes of the four candidates are then chosen as the
offspring.

The one-point mutation operator will create a new fuzzy
membership function by adding a random value ε (between
−w jk to +w jk) to the center or to the spread of an existing
linguistic term, say R jk . Assume that c and w represent the
center and the spread of R jk . The center or the spread of
the newly derived membership function will be changed to
c + ε or w + ε by the mutation operation. Mutation at the
center of a fuzzy membership function may, however, dis-
rupt the order of the resulting fuzzy membership functions.
These fuzzy membership functions then need rearrangement
according to their center values. An example is given below
to demonstrate the mutation operation.

Example 3 Continuing from Example 1, assume after sev-
eral generations, we get a new chromosome C ′

q as shown in
Fig. 6. Also assume the mutation point is set at R41 and the

random value ε is set at 4. The mutation process is shown in
Fig. 6.

5 The proposed mining algorithm

According to the above description, the proposed algorithm
for mining both fuzzy association rules and membership func-
tions is described below.

The proposed mining algorithm:
INPUT: A body of n quantitative transaction data, a set

of m items, each with a number of linguistic terms, a support
threshold α, and a confidence threshold λ.

OUTPUT: A set of fuzzy association rules with its asso-
ciated set of membership functions.

STEP 1: Randomly generate a population of P individuals;
each individual is a set of membership functions for all m
items.
STEP 2: Encode each set of membership functions into a
string representation.
STEP 3: Calculate the fitness value of each chromosome by
the following substeps:
STEP 3.1: For each transaction datum Di , i = 1 to n, and
for each item I j , j = 1 to m, transfer the quantitative value

v
(i)
j into a fuzzy set f (i)

j represented as
(

f (i)
j1

R j1
+ f (i)

j2

R j2
+ · · · + f (i)

jl

R jl

)
,

using the corresponding membership functions represented
by the chromosome, where R jk is the kth fuzzy region

(term) of item I j , f (i)
jl is v

(i)
j s fuzzy membership value in
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region R jk , and l(= |I j |) is the number of linguistic terms
for I j .
STEP 3.2: For each item region R jk , calculate its scalar
cardinality on the transactions as follows:

count jk =
n∑

i=1

f (i)
jk .

STEP 3.3: For each R jk, 1 ≤ j ≤ m and 1 ≤ k ≤ |I j |,
check whether its count jk is larger than or equal to the
minimum support threshold α. If R jk satisfies the above
condition, put it in the set of large 1-itemsets (L1). That is,

L1 = {R jk |count jk ≥ α, 1 ≤ j ≤ mand1 ≤ k ≤ |I j |}.

STEP 3.4: Set the fitness value of the chromosome as the
number of large itemsets in L1.

STEP 4: Execute crossover operations on the population.
STEP 5: Execute mutation operations on the population.
STEP 6: Using the selection criteria to choose individuals
for the next generation.
STEP 7: If the termination criterion is not satisfied, go to
Step 3; otherwise, do the next step.
STEP 8: Output the set of membership functions with the
highest fitness value.

The set of membership functions are then used to mine
fuzzy association rules from the given database. Our fuzzy
mining algorithm proposed in [11] is then adopted to achieve
this purpose.

6 An Example

In this section, an example is given to illustrate the proposed
mining algorithm. This is a simple example to show how the
proposed algorithm can be used to mine membership func-
tions and fuzzy association rules from data. Assume there are
four items in a transaction database: milk, bread, cookies and
beverage. The data set includes the six transactions shown in
Table 1.

Assume each item has three fuzzy regions: Low, Middle,
and High. Thus, three fuzzy membership functions must be
derived for each item. For the data shown in Table 1, the
proposed mining algorithm proceeds as follows:

STEP 1: P individuals are randomly generated as the initial
population. In this example, P is set at 10. Each individual is
a set of membership functions for all the four items including
milk, bread, cookies, and beverage.

Table 1 Six transactions in this example

TID Items

T1 (milk, 5); (bread, 10); (cookies, 7); (beverage, 7)
T2 (milk, 7); (bread, 14); (cookies, 12)
T3 (bread, 15); (cookies, 12)
T4 (milk, 2); (bread, 5); (cookies, 5)
T5 (bread, 9)
T6 (milk, 13); (beverage, 12)

STEP 2: Each set of membership functions is encoded into
a chromosome according to the representation proposed in
Sect. 3. Assume the ten individuals are generated as follows:

C1: 5, 5, 10, 5, 15, 5,6, 6, 12, 6, 18, 6, 3, 3, 6, 3, 9, 3,

4, 4, 8, 4, 12, 4;
C2: 5, 5, 10, 5, 15, 5,4, 6, 10, 6, 16, 6, 4, 3, 7, 3, 10, 3,

4, 4, 8, 4, 12, 4;
C3: 4, 3, 7, 3, 10, 3,6, 6, 12, 6, 18, 6, 6, 5, 11, 5, 16, 5,

6, 4, 10, 4, 14, 4;
C4: 5, 2, 7, 2, 9, 2,5, 4, 9, 4, 13, 4, 6, 5, 11, 5, 16, 5,

6, 4, 10, 4, 14, 4;
C5: 4, 3, 7, 3, 10, 3,6, 6, 12, 6, 18, 6, 5, 3, 8, 3, 11, 3,

3, 4, 7, 4, 11, 4;
C6: 6, 3, 9, 3, 12, 3,5, 5, 10, 5, 15, 5, 4, 4, 8, 4, 12, 4,

6, 4, 10, 4, 14, 4;
C7: 3, 3, 6, 3, 9, 3,6, 2, 8, 2, 10, 2, 6, 5, 11, 5, 16, 5,

4, 4, 8, 4, 12, 4;
C8: 4, 3, 7, 3, 10, 3,6, 6, 12, 6, 18, 6, 5, 6, 11, 6, 17, 6,

6, 4, 10, 4, 14, 4;
C9: 3, 3, 6, 3, 9, 3,6, 3, 9, 3, 12, 3, 6, 5, 11, 5, 16, 5,

6, 2, 8, 2, 10, 2;
C10: 4, 3, 7, 3, 10, 3,6, 2, 8, 2, 10, 2, 6, 5, 11, 5, 16, 5,

6, 3, 9, 3, 12, 3.

STEP 3: The fitness value of each chromosome is calculated
by the following substeps:

STEP 3.1: The quantitative value of each transaction datum
is transformed into a fuzzy set according the membership
functions in each chromosome. Take the first item in trans-
action T 5 using the membership functions in chromosome
C1 as an example. The membership functions for bread in
C1 are represented as (6, 6, 12, 6, 18, 6), which are shown in
Fig. 7.

The amount “9” of item bread is then converted into the
fuzzy set

( 0.5
bread.Low

+ 0.5
bread.Middle

)
using the membership

functions for bread in C1. The results for all the items are
shown in Table 2, where the notation item.term is called a
fuzzy region.

1

bread

6 12 18

Low Middle High

Quantity0

Membership
value

Fig. 7 The membership functions for bread in C1
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Table 2 The fuzzy sets transformed from the data in Table 1

TID Fuzzy set

T1
( 1.0

milk.Low

) ( 0.33
bread.Low

+ 0.67
bread.Middle

) (
0.67

cookies.Middle + 0.33
cookies.High

) (
0.25

beverage.Low
+ 0.75

beverage.Middle

)

T2
( 0.6

milk.Low
+ 0.4

milk.Middle

) (
0.67

bread.Middle + 0.33
bread.High

) (
1

cookies.High

)

T3
(

0.5
bread.Middle + 0.5

bread.High

) (
1

cookies.High

)

T4
( 0.4

milk.Low

) ( 0.83
bread.Low

) ( 0.33
cokkies.Low

+ 0.67
cokkies.Middle

)

T5
(

0.5
bread.Low

+ 0.5
bread.Middle

)

T6
(

0.4
milk.Middle + 0.6

milk.High

) (
1

beverage.High

)

STEP 3.2: The scalar cardinality of each fuzzy region in the
transactions is calculated as the count value. Take the fuzzy
region milk.Low as an example. Its scalar cardinality = (1.0
+ 0.6 + 0.0 + 0.4 + 0.0 + 0.0) = 2.0. The counts for all the
fuzzy regions are shown in Table 3.

Table 3 The counts of the fuzzy regions

Item Count Item Count

milk.Low 2.00 cookies.Low 0.33
milk.Middle 0.80 cookies.Middle 1.33
milk.High 0.60 cookies.High 2.33
bread.Low 1.67 beverage.Low 0.25
bread.Middle 2.33 beverage.Middle 0.75
bread.High 0.83 beverage.High 1.00

STEP 3.3: The count of any fuzzy region is checked against
the predefined minimum support value α. Assume in this
example,α is set at 2.0. Since all the count values of milk.Low,
bread.Middle and cookies.High are larger than 2.0, these
items are put in L1 (Table 4).

Table 4 The set of large 1-itemsets (L1) in this example

Itemset Count

milk.Low 2.0
bread.Middle 2.33
cookies.High 2.33

STEP 3.4: Since there are three large 1-itemsets for the mem-
bership functions of C1 and its suitability is calculated as 4,
the fitness value of C1 is thus 3/4 (= 0.75). The fitness values
of all the chromosomes are shown in Table 5.

Table 5 The fitness values of the chromosomes in the initial population

Chromosome f Chromosome f

C1 0.75 C6 0.54
C2 0.53 C7 0.32
C3 0.27 C8 0.54
C4 0.3 C9 0.31
C5 0.58 C10 0.32

STEP 4: Execute crossover operators on the population. As-
sume d is set at 0.35. Taking the crossover of C1 and C2 as

an example. The following four candidate offspring chromo-
somes are generated as follows:

C1: 5, 5, 10, 5, 15, 5,6, 6, 12, 6, 18, 6, 3, 3, 6, 3, 9, 3,4,

4, 8, 4, 12, 4

C2: 5, 5, 10, 5, 15, 5,4, 6, 10, 6, 16, 6, 4, 3, 7, 3, 10, 3,4,

4, 8, 4, 12, 4

1) Ct+1
1 : 5, 5, 10, 5, 15, 5,4.7, 6, 10.7, 6, 16.7, 6,

3.65, 3, 6.65, 3, 9.65, 3,4, 4, 8, 4, 12, 4

2) Ct+1
2 : 5, 5, 10, 5, 15, 5,5.3, 6, 11.3, 6, 17.3, 6,

3.35, 3, 6.35, 3, 9.35, 3,4, 4, 8, 4, 12, 4

3) Ct+1
3 : 5, 5, 10, 5, 15, 5,4, 6, 10, 6, 16, 6, 3, 3, 6, 3,

9, 3,4, 4, 8, 4, 12, 4

4) Ct+1
4 : 5, 5, 10, 5, 15, 5,6, 6, 12, 6, 18, 6, 4, 3,

7, 3, 10, 3,4, 4, 8, 4, 12, 4
The fitness value of the above four candidates are then

evaluated, with results shown in Table 6.

Table 6 The fitness value of the four candidate offspring

Chromosome f Chromosome f

Ct+1
1 0.8 Ct+1

3 0.8
Ct+1

2 0.8 Ct+1
4 0.8

Since all the four chromosomes have the same fitness
value, any two of them can be chosen. Here assume Ct+1

1
and Ct+1

3 are chosen.

STEP 5: The mutation operator is executed to generate pos-
sible offspring. The operation is the same as the traditional
one except that rearrangement may need to be done.

STEPs 6–8: The best ten chromosomes are selected as the
next generation. The same procedure is then executed until
the termination criterion is satisfied. The best chromosome
(with the highest fitness value) is output as the membership
functions for deriving fuzzy rules.

After the membership functions are derived, the fuzzy
mining method proposed in [11] is then used to mine fuzzy
association rules.
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Fig. 8 The initial membership functions of some four items
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Fig. 9 The final membership functions of some four items after 500 generations
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7 Experiment results

In this section, experiments made to show the performance
of the proposed approach are described. They were imple-
mented in Java on a personal computer with Intel Pentium 4
2.00 GHz and 256 MB RAM. A total of 64 items and 10,000
transactions were used in the experiments. In each data set,
the numbers of purchased items in transactions were first ran-
domly generated. The purchased items and their quantities in
each transaction were then generated. An item could not be
generated twice in a transaction. The initial population size
P is set at 50, the crossover rate pc is set at 0.8, and the
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Fig. 11 The final membership functions when only the suitability is considered
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Fig. 12 The final membership functions when only | L1| is considered

mutation rate pm is set at 0.01 [20]. The parameter d of the
crossover operator is set at 0.35 according to [5] and the min-
imum support α is set at 0.04 (4%). The data generated are
put in the website “http://www.nuk.edu.tw/tphong/data/”.

After 500 generations, the final membership functions are
apparently much better than the original ones. For example,
the initial membership functions of some four items among
the 64 items are shown in Fig. 8.

In Fig. 8, the membership functions have the two bad
types of shapes according to the definition in the previous
section. The membership functions for I tem1, I tem2, and
I tem4 overlap too much. After 500 generations, the final
membership functions for the same four items are shown in
Fig. 9.

It is easily seen that the membership functions in Fig. 9 is
better than those in Fig. 8. The two bad kinds of membership
functions did not appear in the final results.

The average fitness values of the chromosomes along with
different numbers of generations are shown in Fig. 10. As
expected, the curve gradually goes upward, finally converg-
ing to a certain value.

Next, experiments were made by using only suitabil-
ity(Cq ) and only | L1| as the fitness functions to show the
validity of the proposed one. For the same experimental envi-
ronments and data, the membership functions of the above
four items after 500 generations by using only suitability(Cq )
as the fitness function are shown in Fig. 11, and by using only
the number of large 1-itemsets are shown in Fig. 12.

It can be easily seen from Fig. 11 that the derived mem-
bership functions by considering only suitability are satisfac-
tory because the suitability measure is designed for getting
good shapes of membership functions. Its number of large
1-itemsets is, however, less than the original one (which will
be shown later). On the contrary, it is very natural for the
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derived membership functions by considering only the num-
ber of large 1-itemsets to have a bad shape from Fig. 12. Their
overlap degrees are quite high.

The numbers of large 1-itemsets by the original fitness
function, by only the suitability measure, and by only the
number of large 1-itemsets, along with different generations
are further compared, with results shown in Fig. 13.

It can be easily seen from Fig. 13 that the number of large
1-itemsets by only the suitability is the least among the three
fitness functions. The suitability values by the three fitness
functions along with different generations are then shown in
Fig. 14.

From Fig. 14, the suitability by the original fitness func-
tion is even better than that by only the suitability measure. It
is because the solutions by considering only suitability may
be more easily trapped into local optimality than those by
the original fitness functions. Our proposed fitness function
can thus achieve a good trade-off between numbers of large
itemsets and suitability of membership functions.

Next, experiments were made for providing a compara-
tive analysis of the proposed approach with the fuzzy mining
approach in [11] with uniform fuzzy partition. Since the range
of the dataset in our experiments fell in the interval 1–12, the
membership functions shown in Fig. 15 were thus used for
uniform fuzzy partition.

The relationship between the numbers of large 1-itemsets
and the minimum supports for these two approaches is shown
in Fig. 16.
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Fig. 16 The relationship between the numbers of large 1-itemsets and
the minimum supports for the two approaches

It can be observed from Fig. 16 that the number of large
1-itemsets derived by the proposed algorithm was larger than
the one with uniform fuzzy partition. It is consistent with the
previous discussion since the fitness function used will help
the proposed approach search for a larger number of large
1-itemsets.

Experiments were then made to provide an analysis of
the association rules via supports and confidences. Fig. 17
shows the relationship between the numbers of association
rules derived by the membership functions found in the first
phase and the minimum supports along with different mini-
mum confidences.

It can be observed from Fig. 17 that the number of rules
decreased along with the increase of the minimum support
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the minimum supports along with different minimum confidences
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values. Besides, the curve with a large minimum confidence
value was smoother than those with a small value. It means
that the effect is not apparent for a large minimum confi-
dence since most of the association rules cannot satisfy the
confidence condition.

The relationship between the numbers of association rules
derived by the membership functions found in the first phase
and the minimum confidences along with different minimum
supports is shown in Fig. 18.

It can be observed from Fig. 18 that the number of
association rules decreased along with the increase of the
minimum confidence values. Besides, the curve with a large
minimum support value was smoother than those with a
small value, meaning that the minimum confidence value
had a larger effect on the number of association rules when
smaller minimum support values were used. Note that all of
the curves approximated to 0 as the minimum confidence
value approached 1.

8 Conclusion and future works

In this paper, we have proposed a fuzzy data-mining algo-
rithm for extracting both association rules and membership
functions from quantitative transactions. The proposed algo-
rithm can dynamically adjust membership functions by ge-
netic algorithms and uses them to fuzzify the quantitative
transactions. Using the number of large 1-itemsets in the fit-
ness function can achieve a trade-off between execution time
and rule interestingness. The experimental results show that
the designed fitness function is effective to avoiding the two
bad kinds of membership functions in the mining process and
to providing the most information to users. In the future, we
will continuously attempt to enhance the GA-based mining
framework for more complex problems.
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